博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
多流聚合与JSON全文检索的功能应用
阅读量:5752 次
发布时间:2019-06-18

本文共 10059 字,大约阅读时间需要 33 分钟。

标签

PostgreSQL , 写时合并 , 记录级快照 , json , json索引 , json聚合 , 圈选 , 并行计算


背景

这个需求是这样的,数据在写入时,以上一条记录作为基础,将当前写入的记录与上一条记录合并,然后作为新的记录写进去。

从而每一条记录都携带了之前所有记录的内容。

当然这里指的是每个维度各自的快照,并不是一张表所有记录的快照。

例如,一笔电商订单,可能经过若干个系统(每个系统产生的属性可能都不一样,多个系统合起来就是个大宽表,应用为了设计简单,往往可能选择JSON存储,而不是大宽表),产生若干笔记录,每次写入时期望将之前与之相关的记录内容都合并起来,产生新的值写入。

但是不要忘记,同一笔订单的数据,可能存在并行写入(除非业务上能将订单编号按哈希让一个线程来处理它,而且不能多机)。当存在并发写同一笔订单时,写时合并就违反自然规律。

例子:

tbl已有记录 (0, 1, 'test0', now())    session A:    insert into tbl (pk, caseid, info, crt_time) values (1, 1, 'test1', now());    session B:    insert into tbl (pk, caseid, info, crt_time) values (2, 1, 'test2', now());    如果SESSION A,B同时发起,那么写入的记录可能变成:    (1, 1, 'test0_test1', now());    (2, 1, 'test0_test2', now());    然而实际上要的可能是这两条    (1, 1, 'test0_test1', now());    (2, 1, 'test0_test1_test2', now());

所以,我们使用另一种方法来获取快照,写入时,不改变原始的写入方法,即各个业务线产生的订单记录,分别写入到一个单表,使用JSON来表示各个业务线对这个订单的描述。

JSON写入性能

create table tbl_ord (    ordid int8,   -- 订单号    appid  int,   -- 应用ID    info jsonb,   -- 内容    crt_time timestamp  -- 写入时间  );    create index idx_tbl_ord on tbl_ord(ordid, crt_time);

单条写入压测

vi test.sql    \set ordid random(1,10000000)  \set appid random(1,10)  insert into tbl_ord (ordid,appid,info,crt_time) values (:ordid,:appid,jsonb '{"a" : 1, "b" : 2}',now());    pgbench -M prepared -n -r -P 1 -f ./test.sql -c 40 -j 40 -t 2500000

单条写入压测,23.4万行/s。

transaction type: ./test.sql  scaling factor: 1  query mode: prepared  number of clients: 40  number of threads: 40  number of transactions per client: 2500000  number of transactions actually processed: 100000000/100000000  latency average = 0.170 ms  latency stddev = 0.498 ms  tps = 234047.009786 (including connections establishing)  tps = 234060.902533 (excluding connections establishing)  script statistics:   - statement latencies in milliseconds:           0.001  \set ordid random(1,10000000)           0.001  \set appid random(1,10)           0.168  insert into tbl_ord (ordid,appid,info,crt_time) values (:ordid,:appid,jsonb '{"a" : 1, "b" : 2}',now());

如果使用批量写入,可以达到100万+行/s。

JSON全字段索引

PostgreSQL 支持JSON类型的全字段索引,支持两种operator class,支持的检索如下。

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within   a large number of jsonb documents (datums).     Two GIN “operator classes” are provided, offering different performance and flexibility trade-offs.    The default GIN operator class for jsonb supports queries with top-level key-exists operators   ?, ?& and ?| operators and path/value-exists operator @>.     (For details of the semantics that these operators implement,     see Table 9.44.) An example of creating an index with this operator class is:    CREATE INDEX idxgin ON api USING GIN (jdoc);    The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only.     An example of creating an index with this operator class is:    CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);
create index idx_tbl_ord_2 on tbl_ord using gin (info);

使用举例

-- Find documents in which the key "company" has value "Magnafone"  SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';    -- Find documents in which the key "tags" contains key or array element "qui"  SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';    -- Find documents in which the key "tags" contains array element "qui"  SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]}';

点查,json聚合,得任意时间快照

取某个时间点,某个caseid的快照,使用JSONB聚合,性能贼好。

将所有记录聚合成一条

select caseid, jsonb_agg((pk,info,crt_time) order by crt_time) from tbl where caseid=? and crt_time<=? group by caseid;

jsonb_agg用法举例

postgres=# create type typ1 as (c1 int, c2 int);  CREATE TYPE    postgres=# select jsonb_agg((c1,c2)::typ1 order by c1 desc) from (values (1,2),(2,3)) t(c1,c2);                  jsonb_agg                   ------------------------------------------   [{"c1": 2, "c2": 3}, {"c1": 1, "c2": 2}]  (1 row)

按订单的聚合查询性能:

0.7毫秒

create type typ2 as (appid int, info jsonb, crt_time timestamp);    postgres=# select ordid, jsonb_agg((appid,info,crt_time)::typ2 order by crt_time) from tbl_ord where ordid=1 and crt_time<=now() group by ordid;    -[ RECORD 1 ]----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  ordid     | 1  jsonb_agg | [{"info": {"a": 1, "b": 2}, "appid": 6, "crt_time": "2017-12-09T23:24:56.659672"}, {"info": {"a": 1, "b": 2}, "appid": 5, "crt_time": "2017-12-09T23:25:13.073163"}, {"info": {"a": 1, "b": 2}, "appid": 6, "crt_time": "2017-12-09T23:25:49.94649"}, {"info": {"a": 1, "b": 2}, "appid": 10, "crt_time": "2017-12-09T23:26:23.523946"}, {"info": {"a": 1, "b": 2}, "appid": 2, "crt_time": "2017-12-09T23:26:49.900199"}, {"info": {"a": 1, "b": 2}, "appid": 7, "crt_time": "2017-12-09T23:27:10.643058"}, {"info": {"a": 1, "b": 2}, "appid": 8, "crt_time": "2017-12-09T23:27:20.937021"}, {"info": {"a": 1, "b": 2}, "appid": 8, "crt_time": "2017-12-09T23:27:21.446752"}, {"info": {"a": 1, "b": 2}, "appid": 6, "crt_time": "2017-12-09T23:29:19.10536"}, {"info": {"a": 1, "b": 2}, "appid": 7, "crt_time": "2017-12-09T23:29:56.192353"}, {"info": {"a": 1, "b": 2}, "appid": 1, "crt_time": "2017-12-09T23:30:07.879201"}, {"info": {"a": 1, "b": 2}, "appid": 6, "crt_time": "2017-12-09T23:30:31.487457"}]    Time: 0.696 ms

压测

vi test.sql    \set ordid random(1,10000000)  select ordid, jsonb_agg((appid,info,crt_time)::typ2 order by crt_time) from tbl_ord where ordid=:ordid and crt_time<=now() group by ordid;

结果

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 28 -j 28 -T 120    transaction type: ./test.sql  scaling factor: 1  query mode: prepared  number of clients: 28  number of threads: 28  duration: 120 s  number of transactions actually processed: 4677282  latency average = 0.718 ms  latency stddev = 0.463 ms  tps = 38977.016281 (including connections establishing)  tps = 38982.209839 (excluding connections establishing)  script statistics:   - statement latencies in milliseconds:           0.001  \set ordid random(1,10000000)           0.717  select ordid, jsonb_agg((appid,info,crt_time)::typ2 order by crt_time) from tbl_ord where ordid=:ordid and crt_time<=now() group by ordid;

1亿记录,任意订单任意时间点快照聚合,性能:

TPS:38982

平均响应时间:0.718 毫秒

批量获取,使用JSON索引 + PostgreSQL 10的并行计算,飞快

1亿记录,全表扫一遍只需要1秒。

postgres=# select count(*) from tbl_ord;     count     -----------   100000000  (1 row)    Time: 1014.201 ms (00:01.014)

根据索引搜索,极快(毫秒级),支持并行扫描,也支持单进程扫描:

postgres=# explain (analyze,verbose,timing,costs,buffers) SELECT * from tbl_ord WHERE info @> '{"a": 5}';                                                               QUERY PLAN                                                                -------------------------------------------------------------------------------------------------------------------------------------   Gather  (cost=32241.40..142872.70 rows=100000 width=61) (actual time=3.878..3.878 rows=0 loops=1)     Output: ordid, appid, info, crt_time     Workers Planned: 1     Workers Launched: 1     Single Copy: true     ->  Bitmap Heap Scan on public.tbl_ord  (cost=32241.40..142872.70 rows=100000 width=61) (actual time=0.158..0.158 rows=0 loops=1)           Output: ordid, appid, info, crt_time           Recheck Cond: (tbl_ord.info @> '{"a": 5}'::jsonb)           Buffers: shared hit=6           Worker 0: actual time=0.158..0.158 rows=0 loops=1             Buffers: shared hit=6           ->  Bitmap Index Scan on idx_tbl_ord_2  (cost=0.00..32216.40 rows=100000 width=0) (actual time=0.153..0.153 rows=0 loops=1)                 Index Cond: (tbl_ord.info @> '{"a": 5}'::jsonb)                 Buffers: shared hit=6                 Worker 0: actual time=0.153..0.153 rows=0 loops=1                   Buffers: shared hit=6   Planning time: 0.092 ms   Execution time: 4.836 ms  (18 rows)    Time: 5.416 ms  postgres=# set max_parallel_workers_per_gather =0;  SET  Time: 0.202 ms  postgres=# explain (analyze,verbose,timing,costs,buffers) SELECT * from tbl_ord WHERE info @> '{"a": 5}';                                                            QUERY PLAN                                                             -------------------------------------------------------------------------------------------------------------------------------   Bitmap Heap Scan on public.tbl_ord  (cost=32241.40..142872.70 rows=100000 width=61) (actual time=0.062..0.062 rows=0 loops=1)     Output: ordid, appid, info, crt_time     Recheck Cond: (tbl_ord.info @> '{"a": 5}'::jsonb)     Buffers: shared hit=6     ->  Bitmap Index Scan on idx_tbl_ord_2  (cost=0.00..32216.40 rows=100000 width=0) (actual time=0.060..0.060 rows=0 loops=1)           Index Cond: (tbl_ord.info @> '{"a": 5}'::jsonb)           Buffers: shared hit=6   Planning time: 0.091 ms   Execution time: 0.098 ms  (9 rows)    Time: 0.539 ms

批量数据结果通过写OSS,与其他业务平台打通

RDS PG OSS 外部表文档:

HDB PG OSS 外部表文档:

小结

1、一笔电商订单,可能经过若干个系统(每个系统产生的属性可能都不一样,多个系统合起来就是个大宽表,应用为了设计简单,往往可能选择JSON存储,而不是大宽表),业务上需要任意时间点,一笔订单的所有也许数据合并。

2、使用JSON聚合,可以很好的解决订单按时间顺序,合并所有业务线数据的需求。

3、PostgreSQL JSON类型,支持GIN索引,可以实现高效率的JSON内容检索。

4、通过RDS PG对接OSS对象存储,用户在对订单数据进行筛选后,如果要输送给其他平台,通过OSS外部表,可以轻松的对接其他业务。

5、PostgreSQL 支持全表、索引、排序、聚合等操作的并行计算,使得亿级的表,查询飞快。

参考

转载地址:http://wqukx.baihongyu.com/

你可能感兴趣的文章
XML教程
查看>>
oracle体系结构
查看>>
Microsoft Exchange Server 2010与Office 365混合部署升级到Exchange Server 2016混合部署汇总...
查看>>
Proxy服务器配置_Squid
查看>>
开启“无线网络”,提示:请启动windows零配置wzc服务
查看>>
【SDN】Openflow协议中对LLDP算法的理解--如何判断非OF区域的存在
查看>>
纯DIV+CSS简单实现Tab选项卡左右切换效果
查看>>
栈(一)
查看>>
ios 自定义delegate(一)
查看>>
创建美国地区的appleId
查看>>
例题10-2 UVa12169 Disgruntled Judge(拓展欧几里德)
查看>>
JS 原生ajax写法
查看>>
Composer管理PHP依赖关系
查看>>
React.js学习笔记之JSX解读
查看>>
我所了解的Libevent和SEDA架构
查看>>
Socket编程问题小记
查看>>
基于Flask-Angular的项目组网架构与部署
查看>>
一张图道尽程序员的出路
查看>>
redis 常用命令
查看>>
LVS+Keepalived高可用负载均衡集群架构
查看>>